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Abstract
The focus of the current study is on handling the dependence among multiple regression coefficients representing the treatment
effects when meta-analyzing data from single-case experimental studies. We compare the results when applying three different
multilevel meta-analytic models (i.e., a univariate multilevel model avoiding the dependence, a multivariate multilevel model
ignoring covariance at higher levels, and a multivariate multilevel model modeling the existing covariance) to deal with the
dependent effect sizes. The results indicate better estimates of the overall treatment effects and variance components when a
multivariate multilevel model is applied, independent of modeling or ignoring the existing covariance. These findings confirm
the robustness of multilevel modeling to misspecifying the existing covariance at the case and study level in terms of estimating
the overall treatment effects and variance components. The results also show that the overall treatment effect estimates are
unbiased regardless of the underlying model, but the between-case and between-study variance components are biased in certain
conditions. In addition, the between-study variance estimates are particularly biased when the number of studies is smaller than
40 (i.e., 10 or 20) and the true value of the between-case variance is relatively large (i.e., 8). The observed bias is larger for the
between-case variance estimates compared to the between-study variance estimates when the true between-case variance is
relatively small (i.e., 0.5).

Keywords Single-caseexperimentaldesign .Multilevelmeta-analysis .Multivariatemultilevelmodel .Robustvarianceestimator

Introduction

Single-case experimental designs (SCEDs) have been fre-
quently used in many different fields such as psychology,
education, social sciences, and medical sciences to establish
evidence-based practices. In this kind of design, the outcome

of interest is measured repeatedly over time prior to and dur-
ing or after the treatment. Afterwards, scores under these con-
ditions (pre and post treatment) can be compared to evaluate
treatment effectiveness (Horner et al., 2005; Kratochwill et al.,
2010). An inherent SCED characteristic is that each identity
(e.g., an individual or a group of individuals) serves as its own
control. There are a variety of SCED types including with-
drawal or reversal designs, alternating treatment designs,
changing criterion designs, and multiple baseline designs
(MBDs). In the current study, we focus on MBDs in which
the introduction of the treatment is staggered across different
time points for multiple cases, outcomes, or settings. The rea-
son for this choice was that MBDs are not only the most
frequently used SCED design, but they are also internally
and externally more valid compared to other SCED design
types (Kratochwill et al., 2010; Onghena & Edgington, 2005).

The data from several MBDs can be synthesized by apply-
ing multilevel meta-analytic modeling proposed by Van den
Noortgate and Onghena (2003a, 2003b, 2008). A three-level
model can be used to model the hierarchical structure of the
data: the measurement occasions (i.e., the first-level units) are
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nested within cases (i.e., the second-level units), which in turn
are nested within studies (i.e., the third-level units). Multilevel
modeling not only can yield improved estimates of the treat-
ment effects for individual cases, but also an average treatment
effect estimate across cases for each study and an overall treat-
ment effect estimate across all studies. The variance at the first
level, that is the variance between measurement occasions
within cases, can be modeled as follows:

Y ijk ¼ β0jk þ β1jkT ijk þ β2jkDijk þ β3jkT ijkDijk þ eijk with eijk∼N 0;σ2e
� �
ð1Þ

In this equation, i is an indicator for the measurement oc-
casion (i = 0, 1,…, I), j for the case (j = 0, 1,…, J), and k for
the study (k = 0, 1,…,K). Therefore, Yijk is the outcome on the
ithmeasurement occasion from the jth case within study k. The
dummy variable Dijk indicates the corresponding phase for
each measurement and equals 0 if the measurement belongs
to the baseline phase and 1 if it belongs to the treatment phase.
Tijk is a time indicator (e.g., days, the session number). If we
center the time indicator such that it is equal to 0 at the start
point of the treatment phase, β0jk expresses the expected base-
line level at the start point of the treatment phase (where Tijk =
0) and β2jk the immediate treatment effect on the outcomes.
The coefficient β1jk refers to the linear time trend in the out-
come during the baseline phase, and β3jk indicates the treat-
ment effect on the time trend. The sampling error, eijk, is as-
sumed normally, identically and independently distributed
with a zero mean and a sampling variance of σ2

e . The indices
j and k in the regression coefficients mean that these coeffi-
cients are case- and study-specific, respectively. The variation
over cases (second level) is modeled using additional equa-
tions. In a simple model, the case-specific regression coeffi-
cients are assumed to deviate randomly from the study mean
coefficients. The following equations show that the baseline
level, time effect in the baseline phase, the immediate treat-
ment effect, and the treatment effect on the time trend, respec-
tively, vary randomly around the study-specific means:

β0jk ¼ θ00k þ u0jk
β1jk ¼ θ10k þ u1jk
β2jk ¼ θ20k þ u2jk
β3jk ¼ θ30k þ u3jk

with

u0jk
u1jk
u2jk
u3jk

0
BB@

1
CCA∼MVN 0;Σuð Þ

8>><
>>:

Σu ¼
σ2
u0

σu1u0 σ2
u1

σu2u0 σu2u1 σ2
u2

σu3u0 σu3u1 σu3u2 σ2
u3

0
BB@

1
CCA

ð2Þ

Each case-specific coefficient β.jk (i.e., β0jk, β1jk, β2jk, or
β3jk) equals a study-specific mean θ.0k (i.e., θ00k, θ10k, θ20k,
or θ30k) plus a random case-specific deviation from this mean.
The covariance matrix Σu has on its diagonal variances

between cases within the same study andand the off-
diagonal elements the covariances between cases within the
same study. For instance, σ2

u2 and σ2
u3 are the variances be-

tween cases from the same study of the immediate treatment
effect and the treatment effect on the time trend; σu3u2 repre-
sents the covariance between the immediate treatment effect
and the treatment effect on the time trend.

The variation of the study-specific means, θ’s, are modeled
at the third level as the overall regression coefficients, γ’s, plus
a random study-specific deviation from these overall means
over all studies.

θ00k ¼ γ000 þ v00k
θ10k ¼ γ100 þ v10k
θ20k ¼ γ200 þ v20k
θ30k ¼ γ300 þ v30k

with

v00k
v10k
v20k
v30k

0
B@

1
CA∼MVN 0;Σvð Þ

8>><
>>:

Σv ¼
σ2
v0

σv1v0 σ2
v1

σv2v0 σv2v1 σ2
v2

σv3v0 σv3v1 σv3v2 σ2
v3

0
BB@

1
CCA

ð3Þ

Residuals at case and study levels are assumed to be multi-
variate normally distributed. Researchers are mainly interested
in the overall treatment effects (i.e., the overall immediate treat-
ment effect, γ200, and the overall treatment effect on time trend,
γ300) and the (co)variation in these effects over cases and stud-
ies. These (and other) model parameters can be estimated by
applying maximum likelihood procedures commonly used in
multilevel modeling. In addition, one can also obtain improved
estimates of the case- and study-specific treatment effects (the
β’s and θ’s) by using empirical Bayes techniques (Raudenbush
& Bryk, 2002). Multilevel modeling has been applied in the
context of SCED data in previous studies, and its performance
has been assessed in several simulation studies (e.g., Moeyaert,
Ugille, Ferron, Beretvas, &Van denNoortgate, 2013; Owens&
Ferron, 2012; Ugille, Moeyaert, Beretvas, Ferron, & Van den
Noortgate, 2012, 2014). In general, the findings have indicated
appropriate performance in terms of statistical properties such
as relative bias, MSE of this method, both for synthesizing the
standardized and unstandardized SCED data.

The model can be modified in various ways, according to
the data characteristics and the research interests. For instance,
predictor variables can be added at each level to study their
effect on the outcome, or to study how they moderate the
treatment effects. In addition, it is possible to use alternative
specifications of the structure of variances and covariances at
each level.

The model can also be adapted to combine effect sizes,
rather than raw data frommultiple SCED studies. If we obtain
the estimates for two effect sizes of interest (i.e., the immediate
treatment effect and the treatment effect on the time trend) for
each case separately by fitting a simple linear model (Eq. 1),
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we can then synthesize the case-specific ordinary least squares
(OLS) estimates (i.e., b2jk and b3jk) by using either a separate
univariate three-level meta-analysis or a multivariate three-
level meta-analysis (Van den Noortgate & Onghena, 2003b,
2008). For instance, b2jk is equal to β2jk, the immediate treat-
ment effect for the case j from the study k, plus a random
deviation that is due to sampling variance. At the second and
third levels, the equations for immediate effects are the same
as for the raw data model (see Eqs. 2 and 3). We can rewrite
this three-level model in a single equation (Eq. 4):

b2jk ¼ γ200 þ u2jk þ v20k þ r2jk

r2jk∼N 0; σ2
r2jk

� �
; u2jk∼N 0;σ2

u2

� �
; v2jk∼N 0;σ2

v2

� � ð4Þ

in which this estimate of the immediate effect for case j
from study k is equal to the overall immediate treatment effect,
γ200, plus a case-specific random deviation, u2jk, a study-
specific random deviation, v20k, and a residual deviation due
to sampling variance, r2jk. This model provides the overall
treatment effect, γ200, as well as the corresponding between-
case and between-study variance components, σ2

u2 and σ2
v2 ,

respectively. From the initial OLS regression analysis, we al-
ready have an estimate of the sampling variance, σ2

r2jk , so in the

meta-analysis it is assumed to be known.We can use the same
model for synthesizing the estimates of the treatment effect on
the time trend, b3jk by using Eq. 5:

b3jk ¼ γ300 þ u3jk þ v30k þ r3jk

r3jk∼N 0; σ2
r3jk

� �
; u3jk∼N 0;σ2

u3

� �
; v3jk∼N 0;σ2

v3

� � ð5Þ

Alternatively, another way to analyze the multiple effect
sizes, taking into account the dependence among these effect
sizes, is the use of the multivariate mixed model proposed by
Kalaian and Raudenbush (1996), Eq. 6. This model uses the
estimated sampling covariance matrix of multivariate effect
sizes to obtain the optimal weights for the effect sizes and to
estimate model parameters and their corresponding standard
errors rather than using sampling variance estimates of the
effect sizes, which is the case in ordinary meta-analysis. One
of the most important advantages of this approach is that all
available information is used in a single analysis in order to
estimate any treatment effects (Van den Noortgate, López-
López, Marín-Martínez, & Sánchez-Meca, 2013).

b2jk ¼ γ200 þ u2jk þ v20k þ r2jk
b3jk ¼ γ300 þ u3jk þ v30k þ r3jk

�
r2jk
r3jk

� �
∼MVN 0; bσ2 bð Þ

� �
;

u2jk
u3jk

� �
∼MVN 0;Σuð Þ; v2jk

v3jk

� �
∼MVN 0;Σvð Þ

ð6Þ

The sampling covariance matrix, bσ2 bð Þ, the between-case
and between-study covariancematricesΣu andΣv are elements

of ℝ2 × 2. Combining these case-specific effect sizes using a
bivariate three-level meta-analytic model, Eq. 6, results in the
estimates of two fixed effects (γ200 and γ300) and six unique
(co)variance components (the elements of Σu and Σv).

The main advantage of the multivariate model over sepa-
rate univariate three-level models is its ability to provide more
information about the potential covariances between effect
sizes. This strategy explicitly models the correlations among
the effect size estimates and needs information regarding the
covariance structure of the effect size estimation errors.
Getting knowledge about this structure requires the informa-
tion about the dependence structure of the raw data in each
study (Hedges, Tipton, & Johnson, 2010). If the raw data are
available, an estimate of the sampling covariance between
effect sizes can indeed be obtained from the OLS regression.
A major drawback of this multivariate approach is that when
the raw data are not available, this approach is often not ap-
plicable because it is often possible to reconstruct the sam-
pling variances (the squared standard errors, that are typically
reported or can be reconstructed based on the results of statis-
tical significance tests), but not the sampling covariances (Van
den Noortgate et al., 2013).

To understand the sampling covariance between both ef-
fects (i.e., immediate treatment effect and treatment effect on
the time trend) at the lowest level, consider the situation where
there is a positive time trend in the baseline and a positive
immediate treatment effect and a positive effect on the time
trend. If by coincidence the first measurement in the treatment
phase happens to be unexpectedly large, the immediate effect
is likely to be overestimated, while the effect on the trend will
be underestimated. In general, a negative correlation between
both coefficients can be expected. But also at the level of
participants or studies, both kinds of effect might be depen-
dent: for instance, both coefficients can be negatively corre-
lated at the case level, if, for example, some cases show im-
mediately a full effect of the treatment, while for other cases,
the effect is building up gradually. In this situation, a non-zero
covariance between residuals at the case and study level can
be expected. Still, in most previous studies of multilevel
modeling to synthesize the standardized and unstandardized
SCED data (e.g., Moeyaert et al., 2013; Ugille et al., 2012,
2014), it was assumed that each random effect is independent-
ly, identically, and normally distributed with the mean of zero
and a diagonal covariance matrix at the second and third level.
Moeyaert, Ugille, Ferron, Beretvas, and Van den Noortgate
(2016) investigated the impact of covariance matrix
misspecification on the quality of the estimates of fixed and
random effects in the situation where the residuals covary at
the case and study level. They modeled the condition in which
there were two regression coefficients (i.e., the baseline level
and the treatment level) in the multilevel modeling. They
found that misspecifying the existing covariance has no sig-
nificant impact on the estimates of treatment effect. Moreover,
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the results indicated that modeling or ignoring the covariance
leads to relatively unbiased between-case variance estimates,
whereas the between-study variance estimates are biased in
both situations.

The aim of current study is to compare different approaches
to deal with dependent effect sizes in SCED research. We
focus on the situation where you have two effect sizes per
case: one referring to the immediate treatment effect and one
referring to the effect on a time trend. To accommodate these
dependent effect sizes, we use three different approaches: a
traditional univariate random effects approach (for each type
of coefficients separately) avoiding the existing dependence, a
multivariate random effects meta-analytic approach proposed
by Kalaian and Raudenbush (1996) ignoring the existing co-
variance at higher levels, and a multivariate multilevel meta-
analysis modeling the covariance at higher levels. In the last
two approaches, we also study the performance of the sand-
wich estimator (Huber, 1967; White, 1982), also known as the
robust covariance matrix estimator, the empirical covariance
matrix estimator, or robust variance estimator (RVE; Hedges
et al., 2010). This procedure is assumed to yield asymptotical-
ly consistent covariance matrix estimates, even if the underly-
ing models are incorrect or misspecified. We would like to
understand whether treating the existing dependence in differ-
ent ways has any significant impact on the quality of the over-
all treatment effects estimates and the between-case and
between-study (co)variance estimates. A difference with the
study of Moeyaert et al. (2016), is that we focus on the meta-
analysis of effect sizes rather than on the meta-analysis of
SCED raw data, and we compare the results of a multivariate
approach with those of univariate analyses. A difference with
the studies of Ugille et al. (2012, 2014), is that we explicitly
assume that effect sizes are correlated at higher levels and that
we do not only use univariate models to analyze the data.

Method

A simulation study was conducted in order to handle the
dependence among multiple regression coefficients in the
multilevel meta-analysis of SCED studies when freely es-
timating covariances between residuals at higher levels
(i.e., case-level and study-level). Several models were
fitted to the generated data to evaluate their performance
in parameter recovery.

Data generation and analyses were done using SAS 9.4
(Fan, Felsovalyi, Sivo, & Keenan, 2002; SAS Institute Inc.,
2017).

Data generation

SCED raw data were generated using the three-level model
from Eqs. 1 to 3 for MBDs across participants. The

coefficients of covariates in the baseline phase (i. e. , γ000
and γ100) were set to 0, whereas the coefficients of covariates
related to the treatment (i.e., γ200 and γ300) were equal to 2 and
0.2, respectively. We manipulated the between-cases variabil-
ity and the between-studies variability. In addition, we varied
the size of simulated datasets by varying the number of mea-
surement occasions I (I = 10, 20, or 40), the number of cases
within studies J (J = 3, 4, or 7), and the number of studies
meta-analyzed K (K = 10, 20, or 40). The values for I were
chosen based on the findings of several meta-analyses and
systematic reviews of SCEDs (Ferron, Farmer, & Owens,
2010; Shadish & Sullivan, 2011). The values for J were se-
lected based on recommendation of several studies on SCEDs
(Farmer, Owens, Ferron, & Allsopp, 2010; Ferron et al., 2010;
Moeyaert et al., 2013; Shadish & Sullivan, 2011) to find out
how small the number of cases per study could be to return
unbiased estimates in combination with other conditions. For
K, we chose the values based on a systematic review of SCED
meta-analyses (Jamshidi et al., 2020).

Because the data were generated for MBDs, the timing of
treatment introduction was staggered across subjects. Start
points of the treatment for each case (Table 1) were chosen
in line with Ugille et al. (2012) and Moeyaert, Ugille, Ferron,
Beretvas, and Van den Noortgate (2014).

Previous studies have shown that the between-study and
between-case variances are significant factors affecting the
estimates of treatment effects and the variances of these
estimates (Moeyaert et al., 2013, 2014). The level-1 vari-
ance of the raw data was set to 1 and assumed to be homo-
geneous across phases. For the between-case and between-
study covariance matrices (i.e., Σu and Σv, the covariance
matrices at the second and third level), we chose relatively
small or relatively large amounts of variance, and therefore
the variances (i.e., the diagonal elements in the matrices)
were chosen to be either (8, 0.08, 8, 0.08) or (0.5, 0.05, 0.5,
0.05). Because we were interested in the treatment effect
estimates and not in the baseline levels, we solely assumed
a non-zero covariance between the immediate treatment
effect and treatment effect on the time trend at both levels
(i.e., σu2u3 and σv2v3). We considered either no correlation
(ρ = 0) or a large negative correlation (ρ = – .7,

Table 1 Starting occasion of treatment introduction

I J

3 (case 1 to case 3) 4 (case 1 to case 4) 7 (case 1 to case7)

10 4, 6, 8 4, 5, 7, 8 4, 5, 5, 6, 7, 7, 8

20 7, 11, 15 7, 10, 12, 15 7, 9, 9, 11, 13, 13, 15

40 11, 21, 31 11, 18, 24, 31 11, 15, 15, 21, 27, 27, 31

Notes: I = number of measurement occasions; J = number of cases
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corresponding to a covariance of – 0.56 or – 0.11, depend-
ing on the chosen population variances) between these
treatment effects. This rather large correlation was chosen
to make a possible effect of this factor clearly visible. The
value chosen was negative in order to simulate the situa-
tion described in the Introduction, where one may either
show a larger immediate effect or a gradually increasing
effect. Therefore, in Σu and Σv all the off-diagonal ele-
ments of the covariance matrices were set to 0, except for
σu2u3 and σv2v3 for which the values of 0, – 0.56, or – 0.11
were used. Crossing the values of the diagonal and off-
diagonal elements led to four combinations for the
between-case and four for the between-study covariance
matrix (i.e., relatively large variance with no covariance,
relatively large variance with covariance, relatively small
variance with no covariance, and relatively small variance
with covariance).

In total, we evaluated 3 x 3 x 3 x 4 x 4 = 432 conditions and
for each combination, we simulated 2000 data sets, resulting
in 864,000 data sets to be analyzed.

Data analysis

We fitted an OLS model to the generated raw data of each
individual case, using Eq. 1, to estimate the regression coeffi-
cients representing the treatment effect sizes (i.e., the immedi-
ate effect and the effect on time trend, b2jk and b3jk) and the
residual’s standard deviation (bσejk ). These case-specific inter-
vention effect size estimates were then standardized by divid-
ing them by the estimated residual standard deviation (Van
den Noortgate & Onghena, 2003b).

b0jk ¼ bjk

bσejk

ð7Þ

For group-comparison designs, Hedges (1981) proposed to
multiply observed standardized mean differences with an ap-
proximate bias correction factor, in order to reduce the small
sample bias from standardized mean differences:

c mð Þ ¼ 1−
3

4m−1
ð8Þ

with m equal to the degrees of freedom, which is the number
of participants minus two.

In a previous simulation study, we found that applying
Hedges' (1981) bias correction to the standardized effect
sizes leads to better estimates of overall treatment effects
and variance components, especially for small I (Jamshidi
et al., 2019). Therefore, in the current simulation, we syn-
thesized the bias-corrected standardized regression coeffi-
cients. For SCED data, the degrees of freedom, m, is equal
to the number of measurement occasions, I, minus the
number of predictors, p, in the regression model (Eq. 1)

minus one (i.e., m = I – p - 1). According to Eq. 1, the
degrees of freedom equals I - 4. The bias-corrected stan-
dardized effect size is:

b
0
jk

� �c
¼ b

0
jk 1−

3

4m−1

� �
ð9Þ

We also applied the bias correction factor to the standard
error estimates and therefore to the sampling variance corre-
sponding with each coefficient:

bσc

b0

� �2
¼ cσ2

b
0 1−

3

4m−1

� �2

ð10Þ

We analyzed the bias-corrected standardized regression co-

efficients, i.e., b
0
2jk

� �c
and b

0
3jk

� �c
with three different models

including a separate univariate three-level meta-analytic mod-
el for each type of effect, a multivariate three-level meta-ana-
lytic model ignoring the covariance structure at the case and
study level, and a multivariate three-level meta-analytic model
including the covariance structure at the case and study level.
We used the last two models without and with RVE approach,
so in total, five approaches were evaluated. In the following,
“Model 1” refers to the two separate univariate three-level
meta-analytic models for the immediate effect and the effect
on time trend, using Eqs. 4 and 5. By analyzing the two types
of effects separately, we avoid the issue of modeling depen-
dence among these effect sizes in our analysis.

In the second approach, we applied a multivariate three-
level meta-analytic model (later referred to as “Model 2”),
proposed by Kalaian and Raudenbush (1996), Eq. 6, but ig-
noring the covariance structure at the case and study level. For
doing so, first the Cholesky transformation (Kalaian &
Raudenbush, 1996) was used to orthogonalize the regression
coefficients for each case at the first level. Doing so, we could
estimate the model parameters, using the sampling variance
and covariance estimates obtained from the OLS regression
analysis. A bivariate multilevel meta-analysis on these regres-
sion coefficients was then used, estimating the overall effect
on level and on the time trend, as well as their variances at the
case and study level. In a third approach (later referred to as
“Model 2 with RVE”), we used the sandwich estimator for the
standard errors of the overall treatment effect estimates. The
possible advantage of using RVE is that it can return asymp-
totically consistent covariance matrix estimates, even if the
underlying models are incorrect or misspecified (Huber,
1967; White, 1982). We were interested in evaluating the
functionality of adding this estimator to our model. RVE only
adapts the standard errors, not the estimates of the fixed pa-
rameters and variance components. Therefore, in the results
section we only provide separate results for the second and
third approach for the relative bias of standard errors
estimates.
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In the fourth approach, we used again a three-level multi-
variate model, but this time including covariances at the case
and study level (“Model 3”). In the fifth and final approach
(referred to as “Model 3 with RVE”), we used the same model
but applied the sandwich estimator to the standard errors esti-
mates of the overall treatment effects.

For all approaches, wemade use of the restricted maximum
likelihood procedure implement in PROC MIXED, using the
Kenward-Roger approach to approximate the degrees of free-
dom for the t-tests of the fixed effects.We selected this method
for estimating degrees of freedom, because it was found to
perform better in synthesizing multiple-baseline studies
through multilevel modeling with a complex error structure
(Ferron et al., 2010).

To evaluate the performance of the five approaches for
estimating and testing the overall treatment effects parameters
(i.e., γ200 and γ300), we used various criteria. The amount of
absolute bias was approximated by subtracting the true value
from the mean estimated value. We calculated the mean
squared error (MSE) in order to check the accuracy of the
estimates. Moreover, we looked at the estimates of the stan-
dard error (SE) of the overall treatment effects’ estimates, that
can be used to construct confidence intervals. The standard
deviation of the treatment effects estimates can be assumed as
an appropriate approximation of the true standard errors. The
bias of the standard errors was therefore evaluated by the
difference between the median standard error estimates and
the standard deviation of the estimates of the treatment effects.
Because the distributions of the standard errors tend to be
skewed, we used the median rather than the mean of the stan-
dard errors. The coverage proportions (CPs) of the 95% con-
fidence intervals of the overall treatment effects estimates
were constructed to evaluate the treatment effects estimates
and the estimated standard errors. Given that for each condi-
tion 2000 datasets are generated, the standard error of the
estimate of the coverage proportion is approximately .005;
therefore, a fairly good coverage proportion would be expect-
ed to have a value between .94 and .96. An appropriate cov-
erage proportion of the intervals would be a good indicator of
a lack of bias in both the parameter estimates and the corre-
sponding standard errors.

We also looked at the performance of three-level models in
estimating the variance components estimates ignoring and
modeling the covariance at the case and study level. This
way, we could evaluate the impact of the analysis approach
on the between-case variance and between-study variance of
the treatment effects in terms of accuracy of estimates (i.e.,
bias) and the precision of the estimates (i.e., MSE).

Afterwards, we calculated the relative bias of each param-
eter estimates (treatment effects, standard errors, and variance
components) by dividing the estimated bias by its true value.
We considered the cutoff proposed by Hoogland and
Boomsma (1998) to evaluate the values of relative bias.

Values less than .05 are considered as acceptable for the fixed
effect estimates and the values less than .10 are acceptable for
the variance component estimates.

Comparing the results of these analyses in terms of bias,
MSE, standard errors, and confidence interval coverage pro-
portions can clarify the added value of performing a multivar-
iate multilevel meta-analysis over separate univariate multi-
level meta-analyses for each kind of regression coefficients.
We did not expect major differences between these methods in
terms of bias or confidence interval coverage proportions, but
we did anticipate better precision (i.e., smaller MSE’s and
standard errors) when performing a multivariate meta-
analysis as was found in Van den Noortgate et al. (2013).

Finally, we conducted ANOVA’s to investigate which sim-
ulation factors affect the bias, MSE, the standard error, and the
CP. In these analyses, main effect and first order interaction
effects were included. In our discussion, we only focused on
effects with eta squared (η2) higher than .01. We chose this
cutoff because these effects are relatively large compared to
effects of other design factors, although based on the rule of
thumb suggested by Cohen (1988) η2 equal to .01 is consid-
ered as a small effect.

Results

Bias and MSE of the overall treatment effect
estimates

We looked at the absolute bias of the overall treatment effects
estimates (i.e., immediate treatment effect and treatment effect
on time trend). According to an ANOVA, none of the design
factors had a substantial impact on the bias of overall treat-
ment effects estimates. We looked at the relative bias of the
immediate effect estimates and it was close to zero across all
models. The highest relative bias was found forModel 1 when
the overall population effect is 2, resulting in a relative bias of
0.0010. The relative bias for Model 2 andModel 3 was 0.0008
and 0.0007 respectively.

We also looked at the MSE of the average treatment effect
estimates, as an indicator of precision providing important
information about bias and variance of the estimates. The
smaller the values of MSE, the better the estimates. The
ANOVA revealed that the number of studies at the highest
level (η2 = .050) and the between-study variance (η2 = .046),
were the design factors with substantial impact on the MSE of
the estimated treatment effect and to a smaller extent the in-
teraction of these factors (η2 = .013). An overview of how the
estimated MSE values is associated with the relevant simula-
tion factors is shown in Table 2. There were no substantial
differences between the underlying models in terms of MSE
estimates. As we can see in Table 2, the largest MSE were
obtained in conditions with large between-study variance and
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small number of studies. As the number of studies increased
and the between-study variance decreased, the MSE estimates
dropped dramatically. As the number of studies increased
from 10 to 40, the values of MSE became four times smaller.
The MSE estimates range from 0.016 up to 1.232 with the
largest value when ten measurement occasions, three cases,
ten studies, a large value of between-case variance (i.e., σ2

u2

¼ 8 ), and a large value of between-study variance (i.e., σ2
v2

¼ 8 ) are included.
K = number of studies; σ2

v2 = between-study variance;

Model 1 = univariate three-level meta-analysis; Model 2 =
multivariate three-level meta-analysis ignoring covariance;
Model 3 = multivariate three-level meta-analysis modeling
covariance.

Relative standard error bias and confidence interval
coverage proportion

An ANOVA indicated that the relative standard error bias was
mostly affected by the underlying model (η2 = .296) and the
number of studies meta-analyzed (η2 = .259). Negative values
of the relative bias indicate that the standard error estimates
were slightly smaller than expected. The results in Table 3
reveal that in none of the conditions, the relative bias exceeds
the .10 or -.10 cut-off score. The standard errors are more
underestimated when the sandwich estimator procedure is ap-
plied, particularly when the number of studies is small. The
results also indicate as the number of studies increases to 40,

the relative bias is close to zero and negligible across all anal-
ysis models no matter how many cases and how many mea-
surements are included.

We also looked at the confidence interval coverage propor-
tions to evaluate the estimated standard errors. The estimated
coverage proportions range from .93 to .96. As can be seen in
Table 4, there are slight differences in coverage proportion of
the 95% confidence intervals between different approaches. In
general, the CPs are close to the nominal values in most of the
conditions across different models, except in models applying
sandwich estimator with a small number of studies (K = 10),
where the CP is slightly below the nominal value due to higher
underestimation of standard errors in this condition.

Variance components estimates

We evaluated the quality of the variance components esti-
mates (i.e., the between-study and between-case variance)
for both the immediate treatment effect and the treatment ef-
fect on time trend. We only report the results associated to the
immediate treatment effect because similar results were ob-
tained. The ANOVA indicated that none of the factors had a
substantial effect on the bias of the between-study variance
estimates. However, there was notable variation across condi-
tions. The median relative bias across all design conditions
was – 0.059, – 0.052, and – 0.055 for Models 1, 2, and 3,
respectively.

Table 5 gives an overview of the results across conditions.
A negative relative bias in the estimated between-study vari-
ance was found in all conditions. From this table, we can
deduce that the relative bias ranges from – 0.017 to – 0.388
when univariate multilevel meta-analysis applied. This range
equals to – 0.011 to – 0.390 for the approach that ignored the
covariances at the case and study level and – 0.017 to – 0.355
for the approach that modeled these covariances. These results
reveal that the estimates are unbiased as the number of studies
increase to 40 and the number of cases is either 4 or 7.
Additionally, the estimates are almost unbiased when the

Table 2 Mean squared error (MSE) of the estimated immediate effect
(bγ200 )

σ2v2 K = 10 K = 20 K = 40

Model 1 0.5 0.196 0.097 0.049

8 0.953 0.478 0.239

Models 2 and 3 0.5 0.191 0.095 0.048

8 0.948 0.476 0.238

Table 3 Relative difference between the median of the standard error
estimates and the standard deviation of the estimated effects

K = 10 K = 20 K = 40

Model 1 – 0.024 – 0.009 – 0.003

Model 2 – 0.022 – 0.008 – 0.002

Model 2 with RVE – 0.063 – 0.023 – 0.008

Model 3 – 0.022 – 0.009 – 0.003

Model 3 with RVE – 0.063 – 0.023 – 0.008

Notes. K = number of studies; Model 1 = univariate three-level meta-
analysis; Model 2 = multivariate three-level meta-analysis ignoring co-
variance; Model 3 = multivariate three-level meta-analysis modeling
covariance

Table 4 Coverage proportion for the estimated immediate effect (bγ200 )

K = 10 K = 20 K = 40

Model 1 0.9538 0.9523 0.9506

Model 2 0.9532 0.9524 0.9515

Model 2 with RVE 0.9399 0.9448 0.9471

Model 3 0.9531 0.9519 0.9508

Model 3 with RVE 0.9397 0.9447 0.9471

Notes. K = number of studies; Model 1 = univariate three-level meta-
analysis; Model 2 = multivariate three-level meta-analysis ignoring co-
variance; Model 3 = multivariate three-level meta-analysis modeling
covariance

Coverage proportions between .94 and .96 are in boldface
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between-study variance is larger (i.e., σ2
v2 = 8) independent of

the number of cases, the number of studies, and the value of
between-case variance. The smallest values for the relative
bias were found in conditions with a larger number of studies
(K = 40), independent of other design factors. Across all
models, the smaller relative bias was obtained when the
between-study variance is larger.

The ANOVA showed that the MSE of between-study var-
iance estimates are mainly affected by the number of studies
(η2 = .021) and the between-study variance (η2 = .033), and to
a minor extent by the interaction of these two factors (η2 =
.011). Table 6 displays the MSE estimates in terms of these
effective design factors. The MSE estimates are particularly
large in conditions with a larger between-study variance (i.e.,
σ2
v2 = 8). Closer inspection of the results indicates that the

MSE decreases significantly as the number of studies K in-
creases and the between-case and between-study variances
decrease. The largest MSE was obtained in K = 10, J = 4, I
= 10, σ2

u2 ¼ 8, σ2
v2 ¼ 8 condition. We also found that the

smallest MSE occurs in conditions with a large number of
studies, a large number of cases, more measurement occa-
sions, and a small between-case and between-study variabili-
ty. The results also reveal very similar MSE estimates across
different approaches. This means that there is no clear advan-
tage of modeling the covariances at higher levels, in terms of
the precision of the estimated between-study variance.

We also looked at the relative bias in the estimate of the
between-case variance of the immediate treatment effect. The
preliminary ANOVA showed that the number of measurement
occasions (η2 = .098), the between-case variance (η2 = .052),
and the interaction of between-study variance and the number

of measurement occasions (η2 = .040) are the most influential
design factors explaining variability in between-case variance
estimates. As shown in Table 7, the relative bias exceeds the
cut-off of .10 when the population between-case variance is
smaller (i.e., σ2

u2 = 0.5) regardless the values of number of
measurement occasions and between-study variance.
Specifically, the relative bias is highly larger in condition with
smaller number of measurement occasions (I = 10).
Furthermore, the relative bias estimates are smaller in

Table 5 Median of relative deviation of the between-study variance estimates of γ200 compared to the true value

K = 10 K = 20 K = 40

σ2
u2 σ2

v2 J = 3 J = 4 J = 7 J = 3 J = 4 J = 7 J = 3 J = 4 J = 7

Model 1 0.5 0.5 – 0.188 – 0.163 – 0.114 – 0.093 – 0.069 – 0.055 – 0.042 – 0.039 – 0.021

8 – 0.087 – 0.082 – 0.082 – 0.048 – 0.038 – 0.039 – 0.019 – 0.019 – 0.017

8 0.5 – 0.388 – 0.360 – 0.233 – 0.174 – 0.174 – 0.124 – 0.120 – 0.079 – 0.058

8 – 0.114 – 0.100 – 0.092 – 0.064 – 0.050 – 0.045 – 0.026 – 0.024 – 0.019

Model 2 0.5 0.5 – 0.137 – 0.130 – 0.099 – 0.064 – 0.051 – 0.041 – 0.027 – 0.027 – 0.011

8 – 0.079 – 0.080 – 0.079 – 0.044 – 0.034 – 0.036 – 0.013 – 0.014 – 0.014

8 0.5 – 0.390 – 0.378 – 0.225 – 0.172 – 0.174 – 0.121 – 0.120 – 0.083 – 0.060

8 – 0.110 – 0.099 – 0.090 – 0.062 – 0.048 – 0.042 – 0.022 – 0.021 – 0.017

Model 3 0.5 0.5 – 0.138 – 0.137 – 0.107 – 0.073 – 0.062 – 0.050 – 0.039 – 0.039 – 0.021

8 – 0.079 – 0.082 – 0.081 – 0.047 – 0.038 – 0.039 – 0.019 – 0.019 – 0.017

8 0.5 – 0.321 – 0.355 – 0.224 – 0.154 – 0.167 – 0.122 – 0.123 – 0.085 – 0.059

8 – 0.105 – 0.095 – 0.092 – 0.064 – 0.050 – 0.045 – 0.025 – 0.025 – 0.019

Notes. J = number of cases; K = number of studies; σ2
u2 = between-case variance; σ2

v2 = between-study variance; Model 1 = univariate three-level meta-
analysis; Model 2 = multivariate three-level meta-analysis ignoring covariance; Model 3 = multivariate three-level meta-analysis modeling covariance

The values in boldface are larger than the .10 cutoff proposed by Hoogland and Boomsma (1998)

Table 6 Mean squared error (MSE) of the estimated between-study
variance

σ2
u2 σ2

v2 K = 10 K = 20 K =
40

Model 1 0.5 0.5 0.220 0.114 0.059

8 17.545 8.185 4.013

8 0.5 1.635 0.791 0.414

8 25.844 12.308 6.091

Model 2 0.5 0.5 0.209 0.107 0.055

8 17.462 8.137 4.004

8 0.5 1.598 0.775 0.406

8 25.794 12.293 6.084

Model 3 0.5 0.5 0.215 0.106 0.054

8 17.626 8.099 3.972

8 0.5 1.690 0.777 0.403

8 26.029 12.236 6.037

Notes. K = number of studies; σ2u2 = between-case variance; σ2
v2 =

between-study variance; Model 1 = univariate three-level meta-analysis;
Model 2 = multivariate three-level meta-analysis ignoring covariance;
Model 3 = multivariate three-level meta-analysis modeling covariance
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conditions with larger between-case variance and a number of
measurement occasions larger than 10 (i.e., I = 20 or 40). In
general, the univariate approach led to better estimation of the
between-case variance compared to other approaches. The
approaches of ignoring and modeling the covariances in sec-
ond and third levels obtained very similar results.

According to the ANOVA, there were no design factors
that substantially affected the MSE for between-case variance
estimates. The highest η2 was observed for the number of
measurement occasions (η2 = .004). As Table 8 shows, the
MSE is noticeably large when the number of measurement
occasions is 10. The MSE’s highly drop as the number of
measurement occasions increases. As was the case for the
between-study variance, the MSE for the between-case vari-
ance was smallest when the number of observations, cases and
studies was largest and the variances at the higher levels
smaller.

Bias and MSE of between-study covariance
and between-case covariance

The overall absolute bias of the estimated between-case co-
variance (i.e., σu2u3) equals 0.024 and ranges from – 0.008 to
0.090 depending on the condition. We did not look at relative
bias for covariances because of having value of 0 for covari-
ances and it was not possible to calculate relative bias for some
conditions. According to the ANOVA, the number of mea-
surement occasions (η2 = .013) is related to the bias (with a
higher I corresponding to less bias). The MSE values ranged

from zero to 0.679. The largest MSE was observed in K = 10,
J = 4, I = 10, σ2

u2 ¼ 8, σ2
v2 ¼ 8 condition. Similar to the bias,

the number of measurement occasions (η2 = .006) appeared to
be the factor most influencing variability of MSE estimates.
As can be seen in Fig. 1, the bias and MSE is greatly reduced
as the number of measurement occasions increases from 10 to
20.

The mean bias of the between-study covariance was equal
to – 0.003 with the range between – 0.023 and 0.007
representing unbiased estimates. For the estimated between-
study covariance, no substantial effects of the design factors
on the bias were found. TheMSE values ranged from 0.006 to
0.837 with the largest value in K = 10, J = 4, I = 10, σ2

u2 ¼ 8,

σ2
v2 ¼ 8 condition. The ANOVA showed that the number of

studies (η2 = .032), the number of measurement occasions (η2

= .016), and between-study variance (η2 = .016) have signif-
icant effects on MSE estimates. Table 9 indicates that the
smallest MSE values were observed in condition with the
number of measurement occasions larger than 10 (i.e., I = 20
or 40) and the smaller between-study variance (i.e., σ2

v2 = 0.5).

In sum, the results indicate that the between-case and
between-study covariance are well estimated in terms of ac-
curacy and precision. Also estimating the between-case and
especially the between-study variance, results in small and
even negligible bias in almost all conditions. Our results also
indicate that the approach modeling the covariances does not
significantly outperform the approach ignoring the covari-
ances at the case and study level.

Discussion

In the current simulation study, we studied the meta-analysis
of multiple regression coefficients from SCEDs.We simulated
SCED raw data with the covariance between the immediate
treatment effect and the treatment effect on the time trend at
the case and study level. Afterwards, we used five main ap-
proaches to handle the existing dependence between the main
treatment effects (i.e., the immediate treatment effect and the
treatment effect on the time trend).

Table 7 Median of relative deviation of the between-case variance es-
timates of γ200

σ2
u2 σ2

v2 I = 10 I = 20 I = 40

Model 1 0.5 0.5 0.271 0.191 0.094

8 1.928 0.692 0.308

8 0.5 0.083 0.017 -0.005

8 0.213 0.065 0.022

Model 2 0.5 0.5 2.083 0.532 0.177

8 3.760 1.045 0.393

8 0.5 0.215 0.046 0.002

8 0.347 0.095 0.029

Model 3 0.5 0.5 2.102 0.508 0.170

8 3.762 1.013 0.385

8 0.5 0.201 0.037 –0.000

8 0.331 0.085 0.026

Notes. I = number of measurement occasions; σ2
u2 = between-case vari-

ance; σ2
v2 = between-study variance; Model 1 = univariate three-level

meta-analysis; Model 2 = multivariate three-level meta-analysis ignoring
covariance; Model 3 = multivariate three-level meta-analysis modeling
covariance

The values in boldface are larger than the .10 cutoff proposed by
Hoogland and Boomsma (1998)

Table 8 Mean squared error (MSE) of the estimated between-case
variance

I = 10 I = 20 I = 40

Model 1 10.850 2.241 1.527

Model 2 13.947 2.437 1.544

Model 3 13.586 2.344 1.531

Notes. I = number of measurement occasions;Model 1 = univariate three-
level meta-analysis; Model 2 = multivariate three-level meta-analysis
ignoring covariance; Model 3 = multivariate three-level meta-analysis
modeling covariance
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In the first approach, we ignored the dependence among
the treatment effects by running a separate univariate three-
level meta-analysis for each treatment effect. In the second
approach, we used a multivariate model but ignored the
existing simulated covariance at the case and study level. In
the third approach, we used the same model but used a sand-
wich estimator for the standard errors of the effect estimates.
The fourth approach used again a multivariate model but in-
cluded the covariance between the treatment effects at higher
levels. In the fifth approach, a sandwich estimator was applied
for the standard errors for this multivariate model. The ques-
tion was whether handling the dependency among multiple
regression coefficients for each case within SCED studies in
a three-level meta-analysis with these approaches affects the
estimation of statistical properties of fixed effects and variance
components.

Based on the reported results, we did not find substantial
differences between the underlyingmodels in terms of the bias
and MSE of the treatment effect estimates. However, the uni-
variate model (i.e., Model 1) led to slightly larger estimates of
the overall treatment effects compared to other models. None
of the simulation design factors had a substantial impact on the
treatment effects estimates. In contrast, the number of studies,
the between-study and the between-case variance were found

to have significant effects on MSE. The highest MSE values
were obtained in the conditions with a larger between-study
variance and a small number of studies. In terms of the stan-
dard errors of the treatment effects, the underlying models
along with the number of studies and the interaction of num-
ber of measurement occasions, number of cases, and number
of studies played a significant role in the variability of the
estimates. The results indicate a greater underestimation when
the sandwich estimator was applied to results from both ap-
proaches of modeling and when ignoring the covariances at
higher levels. This in turn led to smaller coverage proportions
for results from the models paired with the sandwich estima-
tor, which was slightly smaller than the nominal coverage
proportion values. In general, the overall treatment effects
are estimated precisely and accurately when the covariance
exists at the case and study level, independent of the underly-
ing model fitted. The results indicate that the estimates of the
treatment effects are robust even when the random effects in
the model are misspecified through ignoring the existing
covariances.

The between-study and between-case variances are not es-
timated precisely and accurately in certain conditions. We
found underestimated between-study variances across all
combinations of conditions. However, unbiased estimates
were obtained for the between-study variance in most condi-
tions. Biased between-study variance estimates were observed
particularly in scenarios with 10 or 20 studies and large
between-case variances. On the other hand, more bias was
observed in the between-case variance estimates. Conditions
with a larger between-case variance and 20 or 40 measure-
ment occasions resulted in unbiased between-case variance
estimates. Biased estimates were obtained in other conditions.
In general, modeling the covariances at higher levels led to
slightly less biased estimations of the between-case and
between-study variances in conditions with a larger
between-case variance. The reported results indicate that the
approach that models the existing covariances does not out-
perform the approach that ignores these covariances. Also, in
this simulation, we obtained biased and less precise estimates
for the between-case variance compared to the estimates for
the between-study variance.

These results are not completely in line with the findings in
the study of Moeyaert et al. (2016), who found more bias for
the between-study variance than the between-case variance.
An explanation is that we simulated the covariance between
the immediate treatment effect and the treatment effect on the
time trend at the higher levels, whereas Moeyaert et al. (2016)
generated the covariance between the baseline level and the
treatment effect not between two dependent treatment effect
sizes. Our results show that the degree of bias does not differ
substantially across the models (i.e., the misspecified model
that ignores the covariances at higher levels and the correctly
specified model), and unbiased estimates are obtained for the
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Fig. 1 Bias and MSE of the estimated between-case covariance esti-
mates; I = number of measurement occasions

Table 9 Mean squared error (MSE) of the estimated between-study
covariance

I σ2
v2 K = 10 K = 20 K = 40

10 0.5 0.281 0.171 0.130

8 0.443 0.301 0.227

20 0.5 0.092 0.081 0.077

8 0.173 0.158 0.151

40 0.5 0.081 0.076 0.073

8 0.161 0.153 0.148

Note. I = number of measurement occasions;K = number of studies; σ2
v2 =

between-study variance
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between-case and the between-study covariance in different
conditions.

Limitations and recommendations

The current study suffers from some limitations. The general-
izability of the findings in this study is one of the major con-
cerns, although we generated the data considering certain re-
alistic conditions that seem representative for the single-case
experimental studies. We limited the simulated three-level da-
ta to data from MBDs. We also did not include a possible
autocorrelation between the residuals at the first level although
the existence of autocorrelation might be expected when a
case is repeatedly measured. Furthermore, we only included
the correlation between the regression coefficients associated
with the treatment effects and set the correlation between other
coefficients to zero to explore the performance of different
models in simple scenarios. We only generated conditions
with the covariances at the case and study level together. We
did not simulate conditions with the covariances at only one of
these levels.

Moreover, in this study we evaluated the performance of
different models in terms of handling dependence among the
treatment effects at higher levels applying the three-level me-
ta-analytic approach. This is only one possible source of de-
pendence among effect sizes. Dependence among effect sizes
might occur due to several other reasons. Multiple effect sizes
might be obtained by comparison of different treatments, by
using multiple measures for the same construct or by using
multiple outcome variables (Cheung, 2014; Van den
Noortgate et al., 2013). Dependent effect sizes are less infor-
mative compared to independent effect sizes because they are
calculated from common or related data and therefore give
partly the same information. Thus, including dependent effect
sizes in the meta-analysis as independent effects leads to using
the same information multiple times that in turn, would over-
estimate confidence in the results of the meta-analysis. By
treating dependent effect sizes this way, an underestimation
of the standard errors is likely, resulting in too small confi-
dence interval (Van den Noortgate et al., 2013). It might be
interesting to investigate other sources of dependence among
effect sizes from SCED studies in future studies.

This simulation further generated data by sampling resid-
uals from normally distributed and homogeneous population
distributions, and assuming that time trends are linear. Finally,
we meta-analyzed only treatment effect sizes calculated as
regression coefficients. It might be interesting if in future re-
search other parametric and non-parametric effect sizes
(Manolov &Moeyaert, 2017) are synthesized applying a mul-
tilevel meta-analytic approach. Some non-overlap indices
such as percentage of non-overlapping data (PND; Parker,
Vannest, & Davis, 2011; Scruggs, Mastropieri, & Casto,
1987), percentage of all non-overlapping data (PAND;

Parker, Hagan-Burke, & Vannest, 2007; Parker et al., 2011),
and percentage of zero data (PZD; Campbell, 2004) or a stan-
dardized mean difference (SMD; Gingerich, 1984; Maggin
et al., 2011) can be calculated instead of regression coeffi-
cients as the treatment effect sizes.

In summary, the findings in the current study indicate no
substantial differences between the results of applying differ-
ent three-level meta-analytic models, confirming the robust-
ness of the three-level approach in handling the dependence
among the treatment effects at higher levels even if the covari-
ance structure is misspecified. Although biased variance com-
ponents estimates were obtained in some conditions, the
misspecification of the covariance structure did not lead to
worse estimates. We recommend SCED researchers use a
multivariate multilevel approach to model the existing depen-
dence among multiple regression coefficients (i.e., treatment
effect sizes). Using this approach gives the opportunity to
model the covariance at higher levels when combining the
results from the primary SCEDs.
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